

AFIS®, Amtliches Festpunktinformationssystem

Hinweise und Erläuterungen zur Nutzung von AFIS® im Freistaat Thüringen

Allgemeines

AFIS® ist ein Teilbereich des AAA®-Modells der Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder der Bundesrepublik Deutschland (AdV) zur einheitlichen Modellierung von Geobasisdaten des Amtlichen Vermessungswesens.

In AFIS® werden die Daten aller Festpunkte der Geodätischen Grundlagenetze geführt. Dazu gehören:

Lagefestpunkte	(LFP)
Höhenfestpunkte	(HFP)
Schwerefestpunkte	(SFP)
Geodätische Grundnetzpunkte	(GGP)
Referenzstationspunkte	(RSP)

Mit dem Übergang von länderspezifischen Datenbankstrukturen bei der Verwaltung von Festpunktdaten zu AFIS® werden einheitliche Grundlagen zur Datenmodellierung geschaffen, die auf internationalen Normen und Standards basieren. Damit wird erreicht, dass Festpunktdaten von jeder Amtlichen Vermessungsverwaltung mittels einer Normbasierten Austauschschnittstelle (NAS) in einer einheitlichen Datenstruktur (Datenmodell) zur Verfügung gestellt werden. Das ist besonders für überregionale Nutzer sowie den gesamten GIS- Bereich von erheblicher Bedeutung.

Die Datenstruktur von AFIS® ist in ihrer Gesamtheit in der "Dokumentation zur Modellierung der Geoinformationen des Amtlichen Vermessungswesens" (GeoInfoDok) beschrieben.

Eine komplette AFIS® Dokumentation sowie die GeoInfoDok ist über http://www.adv-online.de/ verfügbar.

Hinweise und Erläuterungen

Um dem Nutzer von AFIS® den Umgang mit dem neuen Datenmodell für seine tägliche Arbeit zu erleichtern, sind nachfolgend einige Attributarten und deren Werte zusammengestellt und erläutert. Das betrifft:

1.	Koordinatenreferenzsystem	"CRS"
2.	Koordinatenstatus	"KST"
3.	Genauigkeitsstufe	"GST"
4.	Tauglichkeit für Satellitenmessverfahren	"GNS"
5.	Punktvermarkung	"PVM"

Hinweis: In diesen Zusammenstellungen sind nur Werte berücksichtigt, die für Festpunkte der Geodätischen Grundlagenetze in Thüringen auch vorhanden sein können.

Koordinatenreferenzsystem "CRS"

"CRS" beschreiben die verschiedenen Bezugssysteme, in denen Koordinaten-, oder Höhenangaben vorliegen können.

CRS für Lageangaben (2-dimensional)

CRS	Bedeutung	ehem. Lagestatus	
DE_RD-83_3GKsn	Gauß-Krüger-Koordinaten, 3°-Meridianstreifen,	110	
BE_1(B 00_001(8))	Bessel-Ellipsoid; (RD 83)	110	
DE_PD-83_3GKsn	Gauß-Krüger-Koordinaten, 3°-Meridianstreifen,	120	
DE_PD-63_3GRSII	Bessel-Ellipsoid; (PD 83)	120	
DE PD-83 3GK4	entspricht LST 120 - PD 83 für Kataster Thüringen	404	
DE_PD-03_3GN4	(alle Koordinaten im 4.Meridianstreifen)	121	
DE 42.02 2CKon	Gauß-Krüger-Koordinaten, 3°-Meridianstreifen,	150	
DE_42-83_3GKsn	Krassowski-Ellipsoid; System 42/83 (3°) der STN	150	
ETDCOO LITMOO	UTM-Koordinaten im System ETRS 89, (E, N) in	400	
ETRS89_UTM32	Zone 32	489	
ETDCOO LITMOO	UTM-Koordinaten im System ETRS 89, (E, N) in	400	
ETRS89_UTM33	Zone 33	490	

CRS für Positionsangaben (3-dimensional)

CRS	Bedeutung	ehem. Lagestatus
ETRS89_X-Y-Z	Dreidimensionale Koordinaten im System ETRS 89	389

CRS für Höhenangaben (1-dimensional)

CRS	Bedeutung	ehem. Höhenstatus
DE_DHHN12_NOH	Normalorthometrische Höhe im System des Deutschen Haupthöhennetzes 1912 (DHHN 12)	100
DE_SNN56_NH	Normalhöhe im System des Staatlichen Nivelle- mentnetzes 1956 (SNN 56)	156
DE_SNN76_NH	Normalhöhe im System des Staatlichen Nivelle- mentnetzes 1976 (SNN 76)	150
DE_DHHN92_NH	Normalhöhe im System des Deutschen Haupthöhennetzes 1992 (DHHN 92)	160
ETRS89_h	Ellipsoidische Höhe ETRS 89 über WGS 84 Ellipsoid	300

Koordinatenstatus "KST"

"Koordinatenstatus" gibt an, ob die Koordinaten bzw. die Höhe amtlich sind oder einen anderen Status besitzen.

Wert	Bezeichnung	Erläuterung
1000	amtliche Koordinaten bzw. amtliche Höhe	gültiger Wert im amtlichen Bezugssystem TH: Lage: ETRS89_UTM32 Höhe: DE_DHHN92_NH
2000	weitere gültige Koordinaten bzw. weitere gültige Höhe	gültiger Wert im nichtamtllichen Bezugs- system TH: Lage: alle CRS außer ETRS89_UTM32 Höhe: alle CRS außer DE_DHHN92_NH
3000	vorläufige Koordinaten bzw. vorläufige Höhe	Keine Ausgabe an Nutzer
5000	historische (nicht mehr gültige) Koordinaten bzw. Höhe	Wird für Koordinaten bzw. Höhen eines Punktes vergeben, sobald aktuellere Koordinaten bzw. Höhen für diesen Punkt vorliegen

Genauigkeitsstufe "GST"

"Genauigkeitsstufe " ist die Stufe der Standardabweichung (S)

Die Angabe "GST" wird sowohl für Koordinaten- als auch für Höhengenauigkeitsangaben verwendet.

Es erfolgt keine Unterscheidung mehr zwischen Lagegewicht (LGW) und Höhengewicht (HGW).

GST	Beschreibung
900	Standardabweichung S kleiner 1 mm
1000	Standardabweichung S kleiner gleich 2 mm
1100	Standardabweichung S kleiner gleich 5 mm
1200	Standardabweichung S kleiner gleich 1 cm
1300	Standardabweichung S kleiner gleich 1,5 cm
2000	Standardabweichung S kleiner gleich 2 cm
2050	Standardabweichung S kleiner gleich 2,5 cm
2100	Standardabweichung S kleiner gleich 3 cm
2200	Standardabweichung S kleiner gleich 6 cm
2300	Standardabweichung S kleiner gleich 10 cm
3000	Standardabweichung S kleiner gleich 30 cm
3100	Standardabweichung S kleiner gleich 60 cm
3200	Standardabweichung S kleiner gleich 100 cm
3300	Standardabweichung S kleiner gleich 500 cm
5000	Standardabweichung S groesser 500 cm

LGW (ThürVPDatA) zu GST (GID 6.0)
1 = 1200 2 = 2100 3 = 2300 4 = 3000
7 = 3200 8 = 3300 9 = 5000

HGW (ThürVPDatA) zu GST (GID 6.0)
1 = 1000 2 = 1100 3 = 1200 4 = 2100 5 = 2200 6 = 2300

Tauglichkeit für Satellitenmessverfahren "GNS"

"GNSS-Tauglichkeit" (GNSS = Global Navigation Satellite Sysrtem) beschreibt die zu erwartenden bzw. nachgewiesenen Empfangsmöglichkeiten bei Satellitenmessverfahren.

Wert	Bezeichnung (GeoinfoDok)	Bezeichnung im Einzelnachweis
1000	weitgehende Horizontfreiheit, Mehrwegeffekte nicht wahrscheinlich	weitgehende Horizontfreiheit
1001	sehr gute Satelliten- Empfangseigenschaften nachgewiesen	sehr guter Satellitenempfang
3000	eingeschränkte Horizontfreiheit	eingeschränkte Horizontfreiheit
3001	eingeschränkte Horizontfreiheit, Tauglichkeit nachgewiesen	Abschattungen, GPS-tauglich
3100	Mehrwegeffekte möglich	Mehrwegeffekte möglich
3101	Mehrwegeffekte nachgewiesen	Mehrwegeffekte nachgewiesen
5000	Festpunkt nicht geeignet für Satellitenmessverfahren	ungeeignet
9998	GNSS-Tauglichkeit nicht untersucht	nicht untersucht

Für Gebrauchsfestpunkte (LFP, HFP, SFP) werden nur die Werte 1000, 3000, 5000, 9998 verwendet. Für diese Punkte wird keine detailliertere Einstufung der GNSS- Tauglichkeit vorgenommen!

Punktvermarkung "PVM"

Eine Zusammenstellung der in Thüringen für Festpunkte der Geodätischen Grundlagenetze vorkommenden Vermarkungsarten steht bei http://www.afis.thueringen.de/ unter der Rubrik "Downloads" zur Verfügung.

Stand: 25.01.2013